Plot velocity likelihoods as a heatmap.
plot_likelihoods_heatmap.Rd
Visualize the top gene likelihoods for each velocity clusters.
Usage
plot_likelihoods_heatmap(
adata,
n_top_genes = 10,
colorscale = "viridis",
velocity_clusters = None,
filename = "velocity_likelihoods.png",
figsize = None,
rescale_columns = True,
return_plot = True
)
Arguments
- adata
Anndata object that has been analyzed with python function
get_velocity_ligands
- n_top_genes
Number of top likelihood genes to visualize. Default 10.
- colorscale
Name of a color palette to be passed to seaborn.
- velocity_clusters
Character vector of velocity clusters to include in the plot. Default
NULL
- include all velocity clusters,- filename
Filename to save as.
- figsize
Tuple to pass to matplotlib
figure()
. Default (10,8)- rescale_columns
Boolean. If TRUE, rescales all ligand importances between 0 and 1. This is recommended because random forest importances are relative.
- return_plot
Boolean. If TRUE, returns a matplotlib
ax
object.